george eleftheriades





University of Toronto, Canada



Huygens' Metasurfaces for Antenna Beamforming and Beamsteering


We will describe the concept of the Huygens' metasurface which comprises co-located electric and magnetic dipoles forming an electrically dense array of Huygens' sources or scatterers. These engineered surfaces can be designed to control electromagnetic waves at will. Unlike traditional antenna transmitarrays, Huygens' metasurfaces can be made sub-wavelength thin and deprived of spurious Floquet modes, while preserving excellent matching characteristics. Huygens' metasurfaces can be used to manipulate the phase, magnitude and polarization of incident electromagnetic waves, including those from nearby elementary antennas, for a variety of applications. For example, Huygens' omega bi-anisotropic metasurfaces enable wave refraction at extreme angles without any reflections. We will review progress of such Huygens’ Metasurfaces for antenna beamforming and beamsteering. Examples to be discussed include antenna focusing and lensing, high aperture efficiency/low-profile antennas, antenna aperture beamforming with simultaneous magnitude and phase control, and electronic beam steering.





George V. ELEFTHERIADES is a Professor in the Department of Electrical and Computer Engineering at the University of Toronto Canada where he holds the Velma M. Rogers Graham Chair in Engineering. Prof. Eleftheriades introduced the concept of using transmission lines to realize negative-index metamaterials in 2002. More recently he pioneered Huygens' metasurfaces, 2D analogues of metamaterials, and their antenna applications. Professor Eleftheriades received the 2008 IEEE Kiyo Tomiyasu Technical Field Award, the 2015 IEEE AP-S John Kraus Antenna Award and the 2019 IEEE Antennas and Propagation Society's Distinguished Achievement Award. He is an IEEE Fellow and a Fellow of the Royal Society of Canada (Academy of Sciences). His research interests include electromagnetic and optical metamaterials, metasurfaces, antennas and components for broadband wireless communications, novel antenna beam-steering techniques, far-field super-resolution imaging, radars, plasmonic and nanoscale optical components, and fundamental electromagnetic theory.